Differentiation of Enterobacteriaceae by Biochemical Reactions

Revised and Emended, 1970 William H.^{0.10}Ewing*

Summary. Tabular data on the biochemical reactions of Enterobacteriaceae are presented, which, if used properly, will enable investigators to identify ninety-five percent or more of cultures isolated in daily practice. The data, including percentages, are given in twenty-one tables. The majority of these contain the results of tests that are of particular usefulness in differentiation of members of the various genera and most species within the family. An emended outline of the nomenclatural system employed is presented in an appendix.

For many years the author and co-workers have studied the biochemical reactions of relatively large numbers of cultures of each of the genera of Enterobacteriaceae in an attempt to produce tabular data, with percentages, that might be of value to investigators in laboratories of all kinds. Although some of these studies still are urpublished, the work led to revision of definitions for the family Enterobacteriaceae, its tribes, and genera (Ewing, 1967), and to recognition of additional tests and methods of value in the differentiation of members of the various genera and species within the family.

The biochemical methods employed were the recommended or standard methods given in the 1958 Report of the International Subcommittee on Enterobacteriaceae, as revised and extended by Ewing (1960, 1962) and by Ewing and Davis (1970).

*Enteric Bacteriology Laboratories, National Communicable Disease Center, Atlanta, Georgia 30333.

49798

The numerical data given in the tables in this and other publications on biochemical reactions by the author and colleagues are based upon the results obtained from examinations of thousands of cultures from all States and Territories of the United States, and from many other parts of the world, over a period of more than 20 years. Since these strains were, with few exceptions, submitted directly or indirectly from clinical laboratories, and since these cultures were, with very few exceptions, quite typical it is believed that the numerical data are representative and objective.

It is the author's opinion that unless percentages are included in tabular data, the resulting tables are of little value. As in the past, 90 percent levels were employed in determining the signs that would be applied. Some arbitrary level must be selected, and the author and colleagues believe that the 90 percent level is the most reasonable and practical. Thus a + sign means that 90 to 100 percent of strains tested on a particular substrate gave positive results within one or two days of incubation. The addition of the actual percentage of such reactions (e.g., 91 percent or 98 percent) yields valuable, useful information. Conversely the same is true of negative results. Further, if percentages are included, the sign "d" (for different reactions) assumes meaning in most instances. For example, if 60 to 90 percent of results obtained in a test are positive, then the "d" sign is meaningful since the majority of cultures yielded positive results. Similarly, the "d" sign is useful if the majority of

sectore according to the strangest for 2

cultures give negative reactions on a particular substrate (e.g., 11 to 25 or 30 percent). When the percentages obtained are in the area between about 30 and 60 percent the "d" sign usually indicates that tests that yield such figures are of little differential value, but this cannot be determined if the actual percentages of positive results are not listed. However, there are instances in which a "d" sign followed by about 40 percent positive for example, is of value as in the case of the differentiation of <u>S</u>. cholerae-suis, inositol, -:0%+, and <u>S</u>. enteritidis, inositol, 42.8%+, or in the differentiation of commonly occurring salmonellae from members of the genus <u>Arizona</u>.

The nomenclatural system employed herein is that proposed by Ewing (1963) and emended in 1966 and 1967. This system is given in outline form in the Appendix for reference. The genus <u>Pectobacterium</u> was incorporated into the tribe Klebsielleae for the reasons given by Graham (1964) and Ewing (1967). An emendation of a name now is required, and some citations must be changed. Because of changes made in the rules of nomenclature approved during the IX International Congress of Microbiology (see International Code of Nomenclature of Bacteria, 1966), it became necessary to change the specific epithet <u>arizonae</u> in <u>Arizona arizonae</u>. The specific epithet <u>hinshawii</u> was proposed (Ewing, 1969) in recognition of Dr. William R. Hinshaw who did much of the pioneer work with members of the genus <u>Arizona</u>. Therefore the correct species name for these microorganisms now is <u>Arizona</u> hinshawii (Appendix). In 1966 the author submitted a request for an opinion regarding a proposal for validation of the species name <u>Arizona arizonae</u> (Kauffmann and Edwards, 1952). As mentioned above it was necessary to emend the specific epithet. More recently, the author was informed (personal communication, 1969) by Dr. P.H.A. Sneath (Chairman, Judicial Commission of the International Committee on Nomenclature of Bacteria) that the Judicial Commission had ruled that the generic name <u>Arizona</u> was not validly published by Kauffmann and Edwards (1952) because the classification and names used by these investigators were suggested, not recommended (Rule 12c). However, the generic name <u>Arizona</u> was legitimately and validly published by Ewing (1963), Ewing, et al. (1965), Ewing and Fife (1966), and Ewing (1967). Since the genus <u>Arizona</u> was characterized and defined by Ewing et al. (1965) and Ewing and Fife (1966), and since the specific epithet was changed legitimately to <u>hinshawii</u>, the correct citations should be <u>Arizona hinshawii</u> (Ewing and Fife) Ewing (Appendix).

If <u>Arizona</u> Kauffmann and Edwards (1952) was illegitimate, then <u>Providencia</u> Kauffmann and Edwards (1952) also was. However, the genus <u>Providencia</u> was validly published, characterized, and defined by Ewing, 1962. Therefore, the citation for this genus should be <u>Providencia</u> Ewing (Appendix).

The 21 tables that follow largely are self-explanatory, but notes are included where necessary to explain certain important exceptional reactions.

It is suggested that the data given in these tables might prove to be of greatest value when used in conjunction with those presented in two other publications (Ewing, 1969, Ewing et al., 1970).

References

- Davis, B. R., and Ewing, W. H. 1965. The biochemical reactions of Citrobacter freundii. NCDC Publ.*
- Ewing, W. H., Tanner, K. E., and Dennard, D. A. 1954. The Providence group: an intermediate group of enteric bacteria. J. Infect. Dis., 94:134-140.
- Ewing, W. H., Davis, B. R., and Reavis, R. W. 1959. Studies on the <u>Serratia</u> group. NCDC Publ.
- Ewing, W. H., Suassuna, I., and Suassuna, I. R. 1960. The biochemical reactions of members of the Proteus group. NCDC Publ.
- Ewing, W. H. 1960. Enterobacteriaceae: Biochemical methods for group differentiation. PHS publication No. 734. U. S. Government Printing Office, Washington, D. C. (Revised 1962).
- Ewing, W. H., Johnson, J. G., and Davis, B. R. 1962. The occurrence of <u>Serratia</u> in nosocomial infections. NCDC Publ.
- Ewing, W. H., Davis, B. R., and Johnson, J. G. 1962. The genus <u>Serratia</u>: Its taxonomy and nomenclature. Inter. Bull. Bact. Nomen. Tax., 12, 47-52.
- Ewing, W. H. 1962. The tribe Proteeae: Its nomenclature and taxonomy. Inter. Bull. Bact. Nomen. Tax., 12:93-108.
- Ewing, W. H. 1963. An outline of nomenclature for the family Enterobacteriaceae. Inter. Bull. Bact. Nomen. Tax., 13, 95-110.
- Ewing, W. H. 1965. Differentiation of members of the genera <u>Salmonella</u>, Arizona, and Citrobacter by biochemical methods, NCDC Publ.
- Ewing, W. H., Fife, M. A., and Davis, B. R. 1965. The biochemical reactions of Arizona arizonae. NCDC Publ.
- Ewing, W. H., McWhorter, A. C., Escobar, M. R., and Lubin, A. H. 1965. <u>Edwardsiella</u>: a new genus of Enterobacteriaceae based on a new species, E. tarda. Inter. Bull. Bact. Nomen. Tax., 15, 33-38.
- Ewing, W. H. 1966. Enterobacteriaceae: Taxonomy and Nomenclature. NCDC Publ.

*Publication of the National Communicable Disease Center, Atlanta, Georgia 30333.

- Ewing, W. H. 1966. Proposal for the validation of the species name <u>Arizona arizonae</u> Kauffmann and Edwards. Inter. J. System. Bacteriol., 16, 423-426.
- Ewing, W. H., and Fife, M. A. 1966. A summary of the biochemical reactions of Arizona arizonae. Inter. J. System. Bacteriol., 16, 427-433.
- Ewing, W. H., and Ball, M. M. 1966. The biochemical reactions of the genus Salmonella. NCDC Publ.
- Ewing, W. H. 1967. Revised definitions for the family Enterobacteriaceae, its tribes and genera. NCDC Publ.
- Ewing, W. H., McWhorter, A. C., Ball, M. M., and Bartes, S. F. 1967. The biochemical reactions of <u>Edwardsiella</u> <u>tarda</u>, a new genus of Enterobacteriaceae. NCDC Publ.
- Ewing, W. H. and Fife, M. A. 1968. <u>Enterobacter hafniae</u> (The "Hafnia Group") Inter. J. Syst. Bacteriol., 18:263-271.
- Ewing, W. H. 1969. <u>Arizona hinshawii</u> comb. nov. Inter. J. Syst. Bacteriol., 19:1.
- Ewing, W. H., McWhorter, A. C., Ball, M. M., and Bartes, S. F. 1969. <u>Edwardsiella</u> tarda: Biochemical reactions. Pub. Health Lab.*, 27-129-141.
- Ewing, W. H. 1969. Biochemical reactions given by Enterobacteriaceae in commonly used tests. NCDC Publ.
- Ewing, W. H. and Davis, B. R. 1970. Media and tests for differentiation of Enterobacteriaceae. NCDC Publ.
- Ewing, W. H., Ball, M. M., Bartes, S. F., and McWhorter, A. C. 1970. The biochemical reactions given by certain bioserotypes of <u>Salmonella</u>. J. Infect. Dis., in press.

*Journal of the Conference of Public Health Laboratory Directors.

- Fife, M. A., Ewing, W. H., and Davis, B. R. 1965. The biochemical reactions of the Tribe Klebsielleae. NCDC Publ.
- Graham, D. C. 1964. Taxonomy of the soft rot coliform bacteria. Ann. Rev. Phytopathol., 2:13-42.
- International Code of Nomenclature of Bacteria. 1966. Inter. J. Syst. Bacteriol., 16:459-490.
- Kauffmann, F. and Edwards, P. R. 1952. Classification and Nomenclature of Enterobacteriaceae. Inter. Bull. Bact. Nomen. Tax., 2, 2-8.
- Kauffmann, F., and Petersen, A. 1956. The biochemical group and type differentiation of Enterobacteriaceae by organic acids. Acta Pathol. Microbiol. Scand., 38:481-491.
- Martin, W. J., Ewing, W. H., McWhorter, A. C., and Ball, M. M. 1969. Biochemical reactions of <u>Salmonella</u> with emphasis on differentiation of this genus and <u>Arizona</u> and <u>Citrobacter</u>. Pub. Health Lab., 27-61-78.
- Report, International Enterobacteriaceae Subcommittee. 1958. Inter. Bull. Bact. Nomen. Tax., 8:25-70.
- Trabulsi, L. R., and Ewing, W. H. 1962. Sodium acetate medium for the differentiation of <u>Shigella</u> and <u>Escherichia</u> cultures. Pub. Health Lab., 20:137-140.
- Trabulsi, L. R., and Edwards, P. R. 1962. The differentiation of <u>Salmonella</u> <u>pullorum</u> and <u>Salmonella</u> <u>gallinarum</u> by biochemical methods. Cornell Vet., 52:563-569.

Differentiation of the Tribes of Enterobacteriaceae By

text		Т	RIBES		
Substrate or test	Escherich- ieae	Edwards- ielleae	Salmon- elleae	Klebs- ielleae	Proteeae
Hydrogen sulfide (TSI or PI agar)	· · ·	(01)+	QA (+) 5	in a second seco	+ or
. teydii			80 24 20(3	1.75	2.5" 2111.000
Urease	* 20+	2 0	98 H.R.+ (1	- or (+)	+ or -
Indol	+ or -		18:00		+ or -
Methyl red	5 t ^o 47	2 (a.a.) 2	(1 74 d. (1	alion i d d stoloto	tib salelyiA
Voges-Proskauer	- and	(1) (1) 4	Cā - 5.	asatteodas	ol, gui n dalana
Citrate	- 1	(3.9 <u>0</u>) ę	07 + b	121 + 5	difuona
(Simmons')			(+)10 4		Sodina accie
KCN	of pri <u>a</u> tkine fre	4947 <u>88</u> 0 (1994) 9 (21.2)	- or +	+ startes i	
Phenylalanine deaminase	e of preidine	ranoviene af F	er 1 er 5 31 89 - + 13, <u>8 99</u> 3	r -	therapid
Tartrate (Jordan's)	+ or -	- <u>19</u> . - . eo kel 19 10 - 19 0 kel	abra di Atti Kali senar	+ or -	+ or -
Mucate	d	6.1001 (100) 6.1001 (100)	d	+ or -	reaction do highest ²⁶ has del
Mannitol	+ or -	te carolles cara	if the generation	iese de esteven	- or +
erpicit E. call .	forentiation o		10011110.00	sly there is	N.B. Obvio

Biochemical Methods 1

Adapted from Ewing (1966)

N.B. <u>Salmonella typhi</u>, <u>Salmonella enteritidis</u> bioserotype Paratyphi A and some rare biotypes fail to utilize citrate. Cultures of <u>S. enteritidis</u> bioser. Paratyphi A and some rare biotypes may fail to produce hydrogen sulfide. Some cultures of <u>P. mirabilis</u> may yield a positive Voges-Proskauer test.

+ 90% or more positive within 1 or 2 days

- 90% or more, no reaction

(+)delayed positive 3 or more days

d different biochemical reactions, +, (+), -.

+ or - majority of strains +, some cultures negative

- or + majority of cultures negative, some strains positive.

Substrate or	E	scherich	ia	anter alla mui	Shigella	<u>a</u>
Test	Sign	%+	(%+)*	Sign	%+	(%+)*
Gas from glucose	+	90.7			2.1 ^a	
Lactose	1 =tobi	90.8	(5.1)	Racharich.	0.3	(11.4) ^b
Sucrose	đ	48.9	(5.6)	0	0.9	(31.1) ^b
Salicin	d	40	(14)	,	0	
Motility	+ or -	69.1		n hill staar i ge Staardin of Te	0	
Indol	+	99.2		- or +	39.8	
Lysine decarboxylase	d	87.9	(1.2)	1. 1977 (<u>2</u> . 1977)	0	
Arginine dihydrolase	đ	17.2	(44.8)	d	9.5	(17.3)
Ornithine decarboxylase	đ	63.4	(7.1)	्यत्वती क्षित्रं भी _अ इंग्लिमेच इन्द्रित का	20 ^b	
Esculin	d	30.9	(19.7)	Pob <u>,</u> list	0	
Sodium acetate	+ or(+)	83.9	(9.7)	-	0 ^C	
Christensen's citrate	d	24.4	(21.2)		0	
Mucate	an t , X	96.3		n aced e te e	o ^b	

Differentiation within the Tribe ESCHERICHIEAE

¹Adapted from Ewing (1966) and Ewing et al., in preparation.

*Figures in parentheses indicate percentages of delayed reactions (3 days or more)

^aCertain biotypes of S. flexneri 6 form gas

^bS. sonnei strains usually ferment lactose and sucrose slowly and cultures of this species decarboxylate ornithine. Some strains of <u>S</u>. sonnei utilize mucate. ^cSee table 4

N.B. Obviously there is no difficulty in the differentiation of typical <u>E</u>. <u>coli</u> cultures and shigellae. However, the anaerogenic nonmotile, varieties of <u>E</u>. <u>coli</u>, some of which are often referred to as Alkalescens-Dispar types, may require closer examination before they can be definitely classified as <u>E</u>. <u>coli</u>. In attempting to classify a particular strain as <u>E</u>. <u>coli</u> or as a member of the genus <u>Shigella</u>, the biochemical reactivities of the culture should be considered as a whole. Shigellae are much less reactive than <u>E</u>. <u>coli</u> strains and a culture that produces acid promptly (i.e., within 24 hrs.) from all, or most of a wide variety of carbohydrates, such as maltose, rhamnose, xylose, sorbitol, and dulcitol, undoubtedly is not a member of the genus <u>Shigella</u>.

+90% or more positive within 1 or 2 days. -90% or more, no reaction. (+) Positive reaction 3 or more days. d Different biochemical reactions, +, (+), -. +or- Majority of strains +, some cultures negative. -or+ Majority of cultures negative, some strains positive.

	- in the second	. An	Lysine	11.2.8 119.8		Argi	nine		Ornith	nine
Genera and species	No. tested	Sign	%+ *	(%+) **	Sign	%+ *	(%+) **	Sig	n %+ *	(%+) **
<u>S. dysenteriae</u>	352	-	0	0	đ	5.4	(42.3)	18.55	0	0
S. flexneri	1817	-	0	0	đ	8.3	(2)	g -	0	0
S. boydii	363		0	0	đ	21	(35.7)	0 -	2.5 ^a	0
S. sonnei	633	°0 - "	0	0 ₀₀₀	đ	8.8	(41.9)	+	99.8 ^b	0
<u>E</u> . <u>coli</u>	505	d	87.9	(1.2)	(X.)(d	17.2	(44.8)	đ	63.4	(7.1
"Alkalescens- Dispar" biotypes	190	a	72.1 ^c	(12.6)	(1.1) d	a.ea 10.5	(50.5)	đ	7.4	(37

The decarboxylase reactions of shigellae and <u>E</u>. <u>coli</u> including nonmotile anaerogenic biotypes such as the "Alkalescens-Dispar" biotypes

* %+ Percentage of positive reactions within 1 or 2 days

** (%+) Percentage of positive reactions after 3 or 4 days

^a These few cultures all were <u>S</u>. <u>boydii</u> ser. 13, a very rare serotype

ealbhi asasdinaiad ul ao

^b Decarboxylation of ornithine is a characteristic of <u>S</u>. <u>sonnei</u>.

Note that the <u>Shigella</u> cultures tested did not decarboxylate lysine whereas the majority of strains of <u>E</u>. <u>coli</u> did and that only a small percentage of <u>S</u>. <u>flexneri</u> possessed an arginine dihydrolase system (10.3%+ in 1 to 4 days).

^C 84.7% of "A-D" O group 1 (E. <u>coli</u> biotype, O group 1) gave positive reactions in lysine medium within 4 days).

TABLE 4a

The reactions of shigellae and E. coli in acetate,

Genera and	1998 T	Sodium	aceta	ate	Chr	istens	sen's	citrate	107	Sodi	um muc	ate
species	No. tested	Sign	%+	(%+)*	No. tested	Sign	%+	(%+)*	No. tested	Sign	%+	(%+)*
<u>S</u> . <u>dysenteriae</u>	50	(-	0	0	294	-	0	0	63		0	0
<u>S. flexneri</u>	100 ¹	1-	0	0	1375	-	0	0	423	- ''	0	0
<u>S. boydii</u>	50	-	0	0	442	1 <u>1</u>	0	0	123	-	0	0
<u>S</u> . <u>sonnei</u>	100	(41) + -	0	0	209	-	0	0	165	d	6.4 ^w	(30.37)
<u>E. coli</u>	186	+or(+)	83.8	(9.7)	423	d	15.8	(18.4)	344	+	91.6	(1.4)
"Alkalescens- Dispar" biotypes	238	+or(+)	89.6 2.01	(4.7)	200	đ	75	(12.5)	61	d		(27.9)

Christensen's citrate, and mucate media

Adapted from Trabulsi and Ewing (1962), and unpublished data.

¹ Includes all <u>S. flexneri</u> serotypes (see also table 4b).

* Figures in parentheses indicate percentages of delayed reactions (3 to 7 days).

W Weakly positive reaction.

TABLE 4b

Reactions of cultures of S. flexneri serotype 4 in sodium acetate medium

Subserotype or biotype of <u>S. flexneri</u> 4	No. tested	%+	(%+)*
ei 4a that 24 bra.)	52	0	(8 ^w)
4a (mannitol negative)	50	0	(43 ^W)
4b			0

*Positive in 2 to 7 days. WWeakly positive reaction.

Substrate or	Esc	herichi	a	Ed	wardsiel	la
test	Sign	%+	(%+)*	Sign	%+	(%+)*
Hydrogen sulfide (TSI)	(.	0		(*	99.7	(0.3)
Mucate	+ 300	91.6	(1.4)		0	(0.3)
Tartrate (Jordan's)	(1 , 1)	97.6	(1.9)		0	ast seite far 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sodium acetate	+ or(+)	83.8	(9.7)	×.•	0	
Mannitol	+	97	1.0		0	
Sorbitol	ist.	93.4	(0.5)	4.0 +30(+1)	0.3	seo ido (190
Rhamnose	a a . (1 d 0) a.	81.8	(2.8)	1 (CC) (CC) (C) 2 (C)	0	associati
Xylose	(£. d .) [82.4	(6.7)	2.58 <u>-</u>	0	Tref's mebset
Trehalose	+ 8.	98.6	(1)		0.3	and galaging and

Differentiation of Escherichia and Edwardsiella¹

¹Adapted from Ewing et al. (1965, 1967, 1969, and unpublished data).

* Figures in parentheses indicate percentages of delayed reactions (3 days or more)

+ 90% or more positive within 1 or 2 days

- 90% or more, no reaction

(+)Delayed positive 3 or more days

- d Different biochemical reactions, +, (+), -.
- + or Majority of strains +, some cultures negative.

- or + Majority of cultures negative, some strains positive.

Test or substrate	S	almone	11a ¹	Ari	izona ²		Citro	obacte	r ³
	Sign	%+	(%+)*	Sign	%+	(%+)*	Sign	%+	(%+)*
Urease	li Luciti	0		sidos	0	98 1919	d	69.4	(6.9)
KCN	<u>en in ser</u>	0.3	(0.3)	entre data de la composition d	8.7		+	96.2	(0.9)
Gelatin (22 C)	<u>1995</u>		(1.3)	(+)		(92)	-j- <u>o</u> bi		(0.9)
Lysine decarboxylase	+	97.7		+	100		-	0	
Ornithine decarboxylase	+	100		+	100		d	17.2	(0.2)
Lactose	- 1	1		d	61.3	(16.7)	(+)or+	39.3	(50.9)
Sucrose	·	0.7		- 8.	4.7	in a la l	d	15.3	(9.4)
Dulcitol	+	98.3			0		d	59.4	(0.7)
Inositol	d	42.8	(1)		0		-	3.3	(1.9)
Cellobiose	(+)or	+ 5.4	(88.1)	đ	1	(72)	+or(+)	60.8	(38)
Malonate		0.7		+ 2.	92.6	(0.7)	đ	21.8	(0.7)
Jordan's tartrate	+	92.5	(1.1)	64 <u>-</u> 19	5.3	(19.3)4	+	100	
Beta galactosidase		1.5		1	92.8	- 	+or-	74.4	
Organic acids**	9.2 ⁻ 198 					nandri d			
citrate D-tartrate	++	96 91	(4) (5.3)	+or(+) (+)or-	78.7	(19.3) (83.3)	(+)or+ (+)	and the second second	(49.5) (90.9)
	· · · · · · · · · · · · · · · · · · ·			1921		Sheet Sheet	An involution		

Differentiation within the Tribe SALMONELLEAE

*Figures in parentheses indicate percentages of delayed reactions (3 or more days)
**Organic acid media of Kauffmann and Petersen, 1956 (see also table 8)
+Positive within one or two days' incubation (90% or more)
(+)Positive reaction after 3 or more days
-No reaction (90% or more)
+or- Majority of strains positive, some cultures negative
-or+ Majority of cultures negative, occasional strains positive
(+)or+ Majority of reactions delayed, some occur within 1 or 2 days
dDifferent reactions: +, (+), -.

¹ Adapted from Ewing and Ball (1966) ²Adapted from Ewing and Fife (1966) ³Adapted from Davis and Ewing (1965)

⁴Cognizance should not be given to delayed reactions. Final readings of Jordan's tartrate medium should be made at 48 hours.

N.B. The majority of salmonellae ferment dulcitol promptly, but <u>S</u>. <u>typhi</u>, <u>S</u>. <u>enteritidis</u> biosero. Paratyphi A and Pullorum, <u>S</u>. <u>cholerae-suis</u>, and a few others do not. Members of the genus <u>Arizona</u> are uniformly negative on this substrate. Bioser. Paratyphi A is lysine negative. <u>S</u>. <u>typhi</u> is ornithine negative.

Test or		eritid:		<u>Ar</u> hin	izona shawii	2	Cit fi	robacte	er 3
substrate	Sigr	n %+	(%+)*	Sign	%+	(%+)*	Sign	%+	(%+)*
Urease	-	0			0		đ	69.4	(6.9)
KCN	347.11	0.1	(0.1)	i	8.7	i in crai		96.2	(0.9)
<u>Gelatin</u> (22C)	(.) - a	0.44		(+)		(92)	negan		(0.9)
Lysine decarboxylase	+	94.4	(0.1)	+	100		-	0	
Ornithine decarboxylase	+	100		+	100		d	17.2	(0.2)
Lactose	s <u>-</u> s	0.3		đ	61.3	(16.7)	(+)or-	+ 39.3	(50.9)
Sucrose	a - c	0.2		ал –	4.7		d	15.3	(9.4)
Dulcitol	+	97.7		$\left \begin{array}{c} 0 \\ - \end{array} \right = 0$	0	(1, 41) .	d	59.8	(0.7)
Inositol	d	43.8	(2)	α (4) - (ε	0			3.3	(1.9)
Malonate	8 -	1	(0.1)	+	92.6	(0.7)	d	21.8	(0.7)
Jordan's tartrate	d	84.2	(1)	- 201	5.3	(19.3) ⁵	₹.1) +	100	
Beta galactosidase	-	2.1		+	92.8		+or-	74.4	
D-tartrate**	* *	92.3	(4)	(+)or	1,6317	(83.3)	(+)		(90.9)

Differentiation of Salmonella, Arizona, and Citrobacter

+ 90% or more positive within 1 or 2 days

- 90% or more, no reaction

(+)Delayed positive 3 or more days

d Different biochemical reactions, +, (+), -.

+ or - Majority of strains positive, some cultures negative.

- or + Majority of cultures negative, some strains positive.

*Figures in parentheses indicate percentages of delayed reactions (3 or more days). 1 Summary of reactions given by 787 cultures: Ewing and Ball, 1966 (tables 8 and 9) and

Martin et al., in press. Compare percentages with those given in table 6.

Adapted from Ewing and Fife, 1966 (specific epithet emended, 1969).

³Adapted from Davis and Ewing (1966).

⁴Two cultures among 526 strains examined by Martin et al. (1969)

⁵Cognizance should not be given to delayed reactions. Final readings of reactions in Jordan's tartrate should be made **at** 48 hours.

**Method of Kauffmann and Petersen (1956).

N.B. The names of tests and substrates that are of particular value in the differentiation of Salmonella and Arizona are underscored.

Reactions of members of the tribe SALMONELLEAE in organic acid media of Kauffmann and Petersen (1956)*

0		1.1	C	itrate		111 100			D-tar	trate	
Genus	No.	1**	(* 27)	5.15	14	-	8,01**	2	5	14	Lactoș e
<u>Salmonella</u>	299	245 (81.9)	42 (14.1)	8 (2.7)	4 (1.3)	0	272 (91)	4 (1	3 .3) (1)	9 (3)	11 (3.7)
<u>Arizona</u>	150	7 (4.7)	111 (74)	23 (15,3)	6 (4)	3 (2)	0	0	68 (45.	57 3) (38)	25 (16.7)
<u>Citrobacter</u>	268	4 (1.5)	143 (53.3)	117 (43.7)	0	4 (1.5)	0	0	119 (44.4)	122 (45.5)	27 (10.1)

*From Ewing, 1965, and Ewing, Fife, and Davis (1965)

**Days of incubation

N.B. Figures in parentheses indicate percentages.

Differentiation of species of Salmonella¹

Test or substrate	S. ch	olerae	-suis	<u>s</u> .	typhi		S. en	teriti	dis
	Sign	%+	(%+)*	Sign	%+	(%+)*	Sign	%+	(%+)*
Hydrogen sulfide (TSI)	d	60	(10)	+W	94.3	Nasaran Sheki kata	+ + in +	98	
Citrate (Simmons')	(+)		(90)	0. (25)	0		C. and	99.3	(0.7)
Ornithine decaroboxylase	+	100		1	0		+ 99351 1980	100	
Gas from glucose	<u>⊊</u> _+	100		-	0		+	97.7	
Dulcitol	d	5	(15)	-or(+)	0	(31.3)	+	98.3	
Inositol	-	0			0		d	42.8	(1)
Trehalose	ê (je	0		+	100		+	100	
Arabinose	-	0		- is		(6.3)	+	99.3	
Rhamnose	+	100		- 6	0		+538.2	95	fain's naism
Cellobiose	5.8 <u>4</u>	0		d	37.5		(+)	5 ((92.8)
Erythritol	(+ ^w) or	r-10	(85)		0		- -	0.6	
Sodium acetate	-or(+ ¹	~))	(20)	-	0		+	92.4	(2.2)
Mucate	rani <u>-</u> arres	0			0		+or(+)	88.3	(1.7)
Stern's glycerol fuchsin	80 197	0		:	0		+	98.2	(0.6)
Organic acids**		t. Serversee						1 5.25-23 1 5.25-23	and the
citrate D-tartrate i-tartrate 1-tartrate	- +lor2da (+)or -or(-	- 0	(85) (35)	- +lor2da - -		(6.3)	+ d		(5.3)

¹Adapted from Ewing and Ball (1966)

*Figures in parentheses indicate percentages of delayed reactions (3 days or more) **Method of Kauffmann and Petersen, 1956. (Twenty hour readings except where indicated, see also table 8)

W Weakly positive reactions

+ Positive within one or two days' incubation

(+)Positive reaction after 3 or more days

- No reaction

Substrate or test	Bioseroty	vpe Par	atyphi A ¹	S. e	enteritid	lis ²	est or sub
Substrate of test	Sign	%+	(%+)*	Sign	%+	(%+)*	an talan karan di Salaman L
Hydrogen sulfide (TSI)	-or+ ^w	12.5	<i>∞</i>	08 +	98	IST) SLEII	verodera vu
Citrate (Simmons')	-or(+)	0	(25)	+	99.3	(0.7)	
Lysine decarboxylase	-	0		+001	99.7		
Inositol	_	0		d	42.8	(1)	
Xylose	16) (1 2	o ^{csiar} (4		• • • •	99		
Cellobiose	đ	12.5	(6.2)	(+)	5	(92.8)	
Glycerol	(+)	0	(100)	đ	5.7	(7.2)	
Stern's glycerol fuchsin	1 (-)	0		+	98.2	(0.6)	
Jordan's tartrate	-	0		00+	92.5	(1.1)	
Sodium acetate	- 13 - 18. 1		(6.2)	+	92.4	(2.2)	
Mucate	-	0	(85)	+or(+)	88.3	(1.7)	
Organic Acids**	Entra . F		12 Par 1683			44) 	sou puito
citrate	_	0		+	96	(4)	
D-tartrate	test - i (ad)	0	Bread Logar	4 +	92.3	(4)	tern's gly
i-tartrate l-tartrate		0	and the second	d d	4.7 11.8	(57.5) (75.2)	

Biochemical reactions of S. enteritidis bioserotype Paratyphi A

¹Adapted from Ewing and Ball (1966) ²From table 21 and Ewing and Ball, 1966 *Figures in parentheses indicate percentages of delayed reactions (3 or more days) **Method of Kauffmann and Petersen, 1956

N.B. Bioserotype Paratyphi A does not occur commonly in the United States, but investigators should be able to recognize it.

+ Positive within 1 or 2 days' incubation (90 percent or more)
(+)Positive reaction after 3 or more days
- No reaction (90 percent or more)
+or- Majority of strains positive, occasional cultures negative
-or+ Majority of cultures negative, occasional strains positive
(+)or+ Majority of reactions delayed, some occur within 1 or 2 days
d Different reactions: +, (+), w Weakly positive reaction

Differentiation of Salmonella enteritidis

			where the state of the
bioserotypes	Pullorum	and	Gallinarum

Substrate or test	Bioserotype Pullorum	Bioserotype Gallinarum			
	Sign %+ (%+)*	Sign %+ (%+)*			
Jordan's tartrate	- 0	+ 100			
Ornithine decarboxylase	+ 100	- 0			
Mucate	- 0 - 10	+ 90.3 ('exocesie) obsarie)			
Gas from glucose	+ 95.1	- 0			
Dulcitol	- 000 - 100	+ 99 (1)			
Maltose (8.00)	-or(+) (35)	+ 98.1 (1.9)			
Cellobiose	_ 0	d 60 (30)			
Glycerol	- ⁰¹⁰ 0 ² 0(*)	(+) (90)			
Cysteine-gelatin	- 0	+ 98.1 (1.6)			
Organic acids**		Sisteria Sisteria Technologian			
citrate D-tartrate i-tartrate 1-tartrate	- 0 - 0 - 0 - 0	-or(+) (40) + 92.2 (3.9) (+) (100) (+)or- (80)			

 1 Modified from Trabulsi and Edwards (1962) and Ewing and Ball (1966)

*Figures in parentheses indicate percentages of delayed reactions (3 days or more) **Method of Kauffmann and Petersen, 1956

N.B. This table is included primarily for the use of workers in veterinary bacteriology. However, others should remember that bioserotype Pullorum occasionally occurs in human infections.

+ Positive within 1 or 2 days' incubation (90 percent or more)
- No reaction (90 percent or more)
+or- Majority of strains positive, occasional cultures negative
-or+ Majority of cultures negative, occasional strains positive
(+)or- Majority of reactions delayed, some occur within 1 or 2 days
d Different reactions: +, (+), -

The reactions given by certain cultures of

Arizona hinshawii in selected tests¹

Test or substrate	Sign	%+	(%+)*
Hydrogen sulfide (TSI)	u (2.	100	jordan's tartrases
ndol			
Citrate (Simmons')	+	91.8	(8.2)
Irease	- -	0	
lotility	(**** *	100	
elatin (Kohn's)	+or(+)	59.2	(40.8)
ysine decarboxylase	+	100	
rginine dihydrolase	(+)or+	16.3	(83.7) Louise 10
Ornithine decarboxylase	+	100	
falonate	+	100	
ordan's tartrate		0	Organic anide -
as from glucose	+	100	
actose	+or(+)	81.6	(18.4)
ucrose		0	
Dulcitol	Ni hessi (301) an	0	
alicin	 parcentaria di du Sejengermentari 	0	
nositol	s, 1910 cijerene≣ antone ge	0	
eta galactosidase	Fig. ser sur rest Fig. ser. Fig. ser.	100	

¹These data are included for comparison with that in tables 6 and 7. This group of 49 cultures was received in a single shipment. Forty-seven strains were recovered from intestinal contents of wild reptiles and two were isolated from the stools of humans.

*Figures in parentheses indicate percentages of delayed reactions (3 days or more)
 + Positive within 1 or 2 days' incubation (90 percent or more). - 90% or more,
no reaction. (+) Positive reaction 3 or more days. d Different biochemical reactions:
+, (+), -. +or- Majority of strains +, some cultures negative. -or+ Majority of
cultures negative, some strains positive.

Differentiation	within	the	genus	Klebsiella

Standard Street	K. pneur	noniae	K. oza	aenae	K. rhino	schleromatis
Test or substrate	Sign	%+	Sign	%+	Sign	%+
		(%+)*	n house as	(%+)*		(%+)*
Urease	+	94.5	d	9.5	-	0
Methyl red	-or+	13.3	94.7 + 163	(10.3) 99.1	+	100
Voges-Proskauer	+	91.1	0.5- p	0		0
Citrate (Simmons')	+	97.7	d	31.9 (31)	-	0
Organic acids**			27.5			
citrate	+or-	64.4	-or+	18	- 5 5 8	nlothadib aminigri O
D-tartrate	+or-	67.1	-or+	36	ylase.	xadıl ⁰ ob eninitarı
) need taget use ad			21.5	S. L. N. L.		
Malonate	-20	92.5	4.5	re 4	+	95.5
Mucate	 ••	92.8	-or+	24	-	0 Die Stituniae est
Lysine decarboxylase	+	97.2	-or+	48	-	0
Gas from glucose	+	96.5	d	64 (2)	-	0
			17	66(27)		authon attaction
Lactose	+	98.2	(+)or+	24.1	(+)or-	(72.8)
Adapted Frist		(1.4)	2012 1124	(70.7)		
Dulcitol	-or+	31.5		0	antes s eddyd	na sti i 0 na rada s ¹ Sava

¹Adapted from Fife, Ewing, and Davis (1965)

+ Positive within 1 or 2 days' incubation (90 percent or more)

- No reaction (90 percent or more)

- No reaction (90 percent or more) (+) Positive reaction after 3 or more days

+or- Majority of strains positive, occasional cultures negative. -or+ Majority of cultures negative, occasional strains positive. (+)or+ Majority of reactions delayed, some occur within 1 or 2 days. (+hare Majordey of react) d Different reactions: +, (+), -A Different reactions: +, (+), -,

*Figures in parentheses indicate percentage of delayed reactions (3 or more days) **Method of Kauffmann and Petersen (1956)

Test or substrate	<u>K</u> . p	neumonia	a managing in the same of the	<u> </u>	. cloacae	
lest or substrate	Sign	%+	(%+)*	Sign	%+	- (%+)*
Gas from:						
Inositol	+	91.9			4.5	
Glycerol Adonitol	+ +or~	92.5 83.7		d -or+	5.5 28.4	(15.9)
Esculin	+ 0	98.9	(1.1)	-or+	29.3	
D			1			?) otorik
Lysine decarboxylase	+	97.2	240		0.5	
Arginine dihydrolase		0.9		+	96.5	
Ornithine decarboxylase	- iit	0	0- 49087 0- 1.18 190	-304 -304	96	
Urease	+ #	94.5	21893	+or-	64.7	
Gelatin (22 C)		3.3	5 <u>5 - 5 -</u>	(+)		(96)
Motility		0		+	94.6	
Growth on synthetic			26.5			
alginate medium	+or(+)	88.5	(9.2)		0	

Differentiation of Klebsiella pneumoniae and Enterobacter cloacae¹

Adapted from Fife, Ewing, and Davis (1965)

*Figures in parentheses indicate percentage of delayed reactions (3 or more days)

+ Positive within one or two days' incubation (90% or more)
(+) Positive reaction after 3 or more days
- No reaction (90% or more)
+or- Majority of strains positive, some cultures negative.
-or+ Majority of cultures negative, some strains positive.
(+)or+ Majority of reactions delayed, some occur within 1 or 2 days.
d Different reactions: +, (+), -.

Differentiation of Enterobacter cloacae

	12	E. cloacae		<u>E</u> .	aerogene	S
Test or substrate	Sign	%+	(%+)*	Sign	%+	(%+)*
Urease	+or-	64.7		11. <u>-</u> 14.5	2.7	
Lysine decarboxylase	_	0.5		+	98.7	
Arginine dihydrolase	+	96.5			0	
Jordan's tartrate	-or+	27.8		+or-	89.3	
Adonitol acid	-or+	28.4		+	98.7	
gas	-or+	28.4		+	98.7	
Inositol acid	d	21.9	(12.4)	+	100	
gas	-	4.5		+	100	laite@
Glycerol acid	d	43.3	(44.8)	- to stated and	100	
gas	d	5.5	(15.9)	+	98.7	(1.3)
Esculin	-or+	29.3		+	98	
Lyfend - Alt A						

and Enterobacter aerogenes¹

¹Adapted from Fife, Ewing, and Davis (1965)

*Figures in parentheses indicate percentage of delayed reactions (3 or more days)

+ Positive within 1 or 2 days' incubation (90% or more)
(+) Positive reaction after 3 or more days
- No reaction (90 percent or more)
+ or - Majority of strains positive, occasional cultures negative.
- or + Majority of cultures negative, occasional strain positive.
(+) or + Majority of reactions delayed, some occur within 1 or 2 days.
d Different reactions: +, (+), -.

Differentiation of Enterobacter aerogenes

Substrate or test	<u>E</u> . Sign	aerogenes %+ (%+)*	E E	. <u>hafniae</u> %+	(%+)*
121 121 121 121 121 121 121 121 121 121	Sign	% * (%+)^	Sign -	+ % sybstrate:	
Adonitol					Carlo and
acid	+	98.7	- 10+ 1	0	
gas	+	98.7	- 1 60	0	
Inositol					
acid	+	100	* 1 82	0	
gas	+	100	- 20-1	0	
Sorbitol	+	100	70-	0	
Raffinose	+	96	*30*	0	
Salicin oor	+ (#.21	98.7 (1.3)	d	13	(8)
Alpha methyl glucoside	+ (B.46	96 (2)	5	0	
Esculin	+ (6-81	98	5	6 883	(2)
Methyl red			1.200-		
37 C		0	+or-	54	
22 C			en e	and the second sec	
Voges-Proskauer		L. and Davis (1965)	17 1W9 . 9919 a	65	
37 C	+	100	+or-		
22 C			sarodinoied	1 a. 99 99	
Citrate (Simmons')		i verdentage el della	a setter		20 34579.7
37 C 22 C	(orol 10-89 Sec. 1. Sec. 16)	93.7	(+)or- d	a an a laibaí Se <mark>3</mark> 11209	(58) (79)
Gelatin (22 C)	(+)or-	(77.3)	an <mark>onten C</mark> era Bulchin, N. N	0	
Mucate	gibž gravi. Up	94.7	a ali Man	0	

and Enterobacter hafniae¹

1 Adapted from Ewing and Fife (1968)

*Figures in parentheses indicate percentage of delayed reactions (3 or more days)

+ Positive within 1 or 2 days' incubation (90 percent or more)

- No reaction (90 percent or more)

(+) Positive reaction after 3 or more days.

+or- Majority of strains positive, occasional cultures negative.

-or+ Majority of cultures negative, occasional strains positive.

(+)or+ Majority of reactions delayed, some occur within 1 or 2 days. d Different reactions: +, (+), -.

Differentiation of Enterobacter liquefaciens¹

and Serratia marcescens subspecies marcescens

Qubatrata an toat	E. liquefaciens			S. marcescens, marcescens			
Substrate or test	Sign	%+	(%+)*	Sign	%+	(%+)*	
Glucose	· bitton	'sfinish	Lord Lornsboo	Selected Bar	our and it		
Acid	+	100		+	100		
Gas	+	94.1		+ ^b or-	52.6		
Inositol		94.1		+-01-	52.0	and a second second second	
Acid	+	97	(1.5)	d	78.5	(8.2)	
Gas	d	1.5	(22)		0	(0.2)	
Gas	u	1.1.1	(22)	a an standarda da Facalada	0		
Glycerol	1.1.1						
Acid	+	98.5	(1.5)	+	97	(2.6)	
Gas	d	45.6	(38.2)		0		
Cellobiose			The server of the se				
Acid	d	26.5	(44.1)	d	20.8	(33.4)	
Gas	d	5.9	(33.8)	_	0	(22 C)	
P Electrony				1 M - 2 1 1 1 1 1 1 1			
Esculin	1 12 3						
Acid	d	75	(1.6)	+	90.8		
Gas	-or+a	37.5			0		
Raffinose							
Acid	d	86.8	(2.9)		1.7	(1.2)	
Gas	d	17.6	(60.3)		0	(
Sector and the sector of the s							
Arabinose				and a second		and a star of the second s	
Acid		92.6		theres indice	0		
Gas	d	23.5	(14.7)		0		
(ylose				1.			
Acid	+ d	92.6	(1.5)	d	8	(18.3)	
Gas	d	30.9	(23.5)	and the first state of the	0		
) et Laga sur à sâr - v				and a start of the second			
Irythritol			1. 1 . 1.	ાંગ તેલું ગામ્યાલય છેલું. આ ગામમાં આ ગામથા			
Acid		0		đ	1.7	(22.8)	
lpha methyl glucoside	10 C. 10 C.			althires assisted	2 30 4323		
Acid	-or+	21.7		1999 <u>9</u> 1 (1997) - 2991 1999 - 2000	0.9	(0.6)	
lethyl red	and a surger of the						
(37 C)	+or-	75		-or+	17.7		
(22 C)	-or+	33.3		-or+	8.8		
oges-Proskauer	and the state			(1267) - Mela			
(37 C)	-or+	30.9		+	100		
(22 C)	+or-	79.4		+	100		
(22 3)	.01						

¹Adapted from Ewing et al. (1959), Ewing, Johnson, and Davis (1962), Fife, Ewing, and Pavis (1965), and Ewing and Davis (unpublished data). ^aGas volumes: bubble to 10 percent

bGas volumes: 10 percent or less

*Figures in parentheses indicate percentage of delayed reactions (3 or more days). + Positive within 1 or 2 days' incubation (90 percent or more). - 90% or more, no reaction (+) Positive reaction 3 or more days. d Different biochemical reactions: +. (+), -.

+or- Majority of strains +, some cultures negative. -or+ Majority of cultures negative, some strains positive.

N.B. The only important difference between <u>S</u>. <u>marcescens</u> subspecies <u>marcescens</u> and <u>S</u>. <u>marcescens</u> subspecies <u>kiliensis</u> is their reactions in the Voges-Proskauer test. Cultures of the later are V-P negative.

Differentiation of Proteus vulgaris and Proteus mirabilis

Substrate or test	<u>P</u> . <u>vulgaris</u> Sign	and <u>P</u> . %+	<u>mirabilis</u> (%+)*	<u>P</u> . <u>morgani</u> Sign	<u>i</u> and <u>P</u> . %+	rettgeri (%+)
Hydrogen sulfide (TSI)	+	94.5	(2.6)		0	
Gelatin (22 C)	5	91.6	(6.4)		0	
Lipase (corn oil)	+	89.6	(5.2)	-	0	piluary Bisk
Swarm (2% agar)	+ ·	94	(1)	E 1 10-1	0	

from Proteus morganii and Proteus rettgeri

*Figures in parentheses indicate percentage of delayed reactions (3 or more days)

+ Positive within 1 or 2 days' incubation (90 percent or more) (+) Positive reaction after 3 or more days

- No reaction (90 percent or more)

TA	BLE	19
IU	DLL	1.2

Test or substrate	<u>P</u> .	vulgari	s	<u>P</u> . <u>n</u>	nirabili	s and and a
	Sign	%+	(%+)*	Sign	%+	(%+)*
Indol		98.2	100 100		1.9	
Voges-Proskauer 37 C	- 10m	0	8.9. A.B.	-or+	15.6	
22 C	-or+	-	1.01	+or-	51.6	,960-1002
Citrate (Simmons')	d	10.5	(14.1)	+or(+)	58.7	(37.1)
Ornithine decarboxylase	ь +1	0		29 250 . 19	99.2	
Sucrose	5 +	94.7	0	d	18.9	(63.3)
Maltose	. . .	96.2	(1.9)		0.9	(0.4)
Salicin	d	58.2	(10.9)	d	0.8	(29.8)
Alpha methyl glucoside	đ	79.5	(5.1)	-	0	
Esculin	d	59	(2.6)	-		(0.9)
DNase	+or-	60		inter <u>r</u> ation	0	

Differentiation of Proteus vulgaris and Proteus mirabilis

¹Adapted from Ewing, Suassuna, and Suassuna (1960), Ewing (1962), and Ewing et al. (in preparation)

*Figures in parentheses indicate percentage of delayed reactions (3 or more days)

+ Positive within 1 or 2 days' incubation (90 percent or more) (+) Positive reaction after 3 or more days

- No reaction (90 percent or more)

Test or substrate	<u>P</u> .	morganii	and the second second	P. rettgeri			
lest of substrate	Sign	%+	(%+)*	Sign	%+	(%+)*	
Citrate (Simmons')	2. <u>Voluce</u> 0.112	0			95.6	(3.3)	
Ornithine decarboxylase	+	97.1	(j.\$e\$*	-	0		
Gas from glucose	d	84.9	(0.9)	-or+	12.2		
Sucrose	- 30-	1	(2.9)	d	13.3	(56.7)	
Mannitol	-	0	18.22	+or-	88.5		
Adonitol	-	0		d	80.9	(5.6)	
Inositol	-	0	6 (1)	+	93.3	(4.5)	
Salicin		0	0,40	đ	30	(6.6)	
Erythritol	enetraine a	0	.26.2 (1)	d	78.3	(6.5)	
Esculin	<u>1</u>	0	59.2 (10.	d	30.4	(8.7)	
Kylose	n 1. pr. 2 - blad attac	0	nibatijat 010 de kot Sava	-or+	15.1		
Cellobiose	0 périodini 01 périodini	0	(1.9)	d	3.7	(30.4)	

Differentiation of Proteus morganii and Proteus rettgeri¹

¹Adapted from Ewing, Suassuna, and Suassuna (1960) and Ewing et al. (in preparation)

*Figures in parentheses indicate percentage of delayed reactions (3 or more days)

+ Positive within 1 or 2 days'incubation (90 percent or more)

(+) Positive reaction after 3 or more days

- No reaction (90 percent or more)

Substrate or test	P. morganii		P. rettgeri		Ρ.	P. alcalifaciens		P. stuartii	
	Sign	%+ (%+)*	Sign	%+ (%+)*	11) 11)	Sign	%+ (%+)*	Sign	%+ (%+)*
Urease		98.2(0.9)	t 1 théree (traite (traite	100	940) <u>9</u> 94 339	d. 184 D a th Leal	0	1999 1997 1997	0
Ornithine decarboxylase	+	97.1	47334 61.eV	0		. <u>686</u> 2 anga	0	2018-2019 - 1	0
Gas from glucose	d	84.9(0.9)	-or+	12.2		d	85.8(0.6)	1998-93 1999 - 1997	0
Mannitol	-	0	+or-	- 88.5	题:	entwa Pi <mark>-</mark>	2(0.2)	d	13.3(1.3)
Adonitol	113353843 	0	d	80.9(5.6	5)	10411 +	94.5(0.2)	<u>wha</u>	3.8
Inositol	100 <u>-</u> 001	0	+	93.3(4.5	;)	-	0.6	+	97.5(2.5)
Erythritol	2 <u>-</u> 5	0	d	78.3(6.5)	-	0	11.996.1.1 -	0
Esculin	2 2. - 2.	0	d	30.4(8.7)	léins a t a	0	162 767	i o ²⁰⁰⁷⁰³ .
Cellobiose	ok _bas	0(0.9)	d	3.7(30.4)	234, 23 [<u>X]</u> - <u>3</u>	1.5(3)	d	12.5(68.7)

Differentiation of <u>Proteus morganii</u> and <u>Proteus rettgeri</u> from Providencia alcalifaciens and Providencia stuartii¹

¹Adapted from Ewing, Tanner, and Dennard (1954), Ewing, Suassuna and Suassuna (1960), Ewing, et al. (in preparation)

*Figures in parentheses indicate percentage of delayed reactions (3 or more days)

+ Positive reaction within 1 or 2 days' incubation (90 percent or more)

```
- No reaction (90 percent or more)
```

```
+or- Majority of strains positive, occasional cultures negative.
```

```
-or+ Majority of cultures negative, occasional strains positive.
```

```
(+)or+ Majority of reactions dealyed, some occur within 1 or 2 days.
```

```
d Different reactions: +, (+), -
```

APPENDIX

The Nomenclature of the Family Enterobacteriaceae in Outline

Family ENTEROBACTERIACEAE Rahn

- Tribe I ESCHERICHIEAE Bergey, Breed, and Murray Genus Escherichia Castellani and Chalmers T 1. Escherichia coli (Migula) Castellani and Chalmers II Shigella Castellani and Chalmers 1. Shigella dysenteriae (Shiga) Castellani and Chalmers 2. Shigella flexneri Castellani and Chalmers Shigella boydii Ewing 3. Shigella sonnei 4. (Levin) Weldin Tribe II EDWARDSIELLEAE Ewing and McWhorter Edwardsiella Ewing and McWhorter Genus I 1. Edwardsiella tarda Ewing and McWhorter Tribe III SALMONELLEAE Bergey, Breed, and Murray Salmonella Lignières Genus Ι 1. Salmonella cholerae-suis (Smith) Weldin Salmonella typhi (Schroeter) Warren and Scott 2. Salmonella enteritidis (Gaertner) Castellani and Chalmers 3. Arizona Ewing and Fife Genus II Arizona hinshawii (Ewing and Fife) Ewing 1. Citrobacter Werkman and Gillen Genus III Citrobacter freundii (Braak) Werkman and Gillen 1. Tribe IV KLEBSIELLEAE Trevisan Genus Klebsiella Trevisan I
 - 1. Klebsiella pneumoniae (Schroeter) Trevisan
 - 2. Klebsiella ozaenae (Abel) Bergey, Breed, and Murray
 - 3. Klebsiella rhinoschleromatis Trevisan

APPENDIX (Continued)

Genus	II	Enterobacter Hormaeche and Edwards 1. Enterobacter cloacae (Jordan) Hormaeche and Edwards 2. Enterobacter aerogenes (Kruse) Hormaeche and Edwards 3. Enterobacter hafniae (Moeller) Ewing 4. Enterobacter liquefaciens (Grimes and Hennerty) Ewing
Genus	III	<u>Pectobacterium</u> Waldee 1. <u>Pectobacterium</u> <u>carotovorum</u> (Jones) Waldee
Genus	IV	Serratia Bizio Serratia marcescens Bizio (Serratia marcescens subspecies marcescens) Serratia marcescens subspecies kiliensis (Lehmann and Neumann) Ewing, et al.
Tribe V	PR	OTEEAE Castellani and Chalmers
Genus	I	ProteusHauser1.Proteusvulgaris2.Proteusmirabilis3.Proteusmorganii4.Proteusrettgeri(Winslow et al.)Rauss(Hadley et al.)Rustigian and Stuart
Genus	II	Providencia Ewing 1. Providencia alcalifaciens (DeSalles Gomes) Ewing 2. Providencia stuartii (Buttiaux et al.) Ewing

N.B. The first species listed in each genus is the type species.

Eschericold . astelleright